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ABSTRACT

A step-by-step procedure is described for designing
digital counters having complex, arbitrary sequences. A
divide-by-ten up-down counter is thendesigned to illustrate
use of truth tables, P" terms, Veitch diagrams, and "don't
care" terms for simplifying the gate functions used to trig-
ger each counter stage. The value of this procedure in
circuit analysis as well as for circuit sy n t h e s i s is then
emphasized and illustrated by example. This procedure
makes use of fundamental Boolean algebra and minimization
techniques.
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PROCEDURE FOR THE DESIGN AND ANALYSIS
OF ARBITRARY LENGTH DIGITAL COUNTERS

INTRODUCTION

Many approaches, tricks, and shortcuts are used in the synthesis and analysis of
digital counter circuits. The following discourse treats of one method which has been
used to advantage in the course of current digital design assignments. Several types of
counters, along with possible trouble areas, will be discussed and alternatives given where
possible. A detailed design example is given for the synthesis of a forward-backward
divide-by-10 counter. Also illustrated is the circuit analysis of a counter for which the
count sequence is hypothetically unknown.

While the material contained in this note can be found in many sources on the subject
of Boolean algebra and its application, it is believed that the step-by-step design and
analysis procedures as presented here form a useful contribution.

APPLICATION OF THE RIPPLE COUNTER

Digital systems make extensive use of the so-called modulo-2n counter, where n is
the number of bits or stages of the counter. In general, such a counter can assume 2n
discrete states, including the all-ZERO or reset state, and thus can represent a maximum
number (2 - 1) before starting over with a zero count as additional pulses are applied.
Thus, a modulo counter cannot distinguish between two numbers which differ by an integral
multiple of its modulus, 2n. Depending upon the application, various counter circuit con-
figurations can be used. For counting pulses of low repetition rates, a straightforward
and simple binary "ripple" counter, such as the one shown in Fig. la, usually will suffice.
The type of flip-flop (labeled FF) considered throughout this report is the well known
'complement trigger"; a pulse applied to a complement input will always cause the flip-
flop to change from the state it is in to the other state. In addition, each flip-flop has an
ac set and an .ac reset input. All inputs are assumed to require a positive transition to
activate the flip-flop. A negative level, say -6 volts, is here assumed to represent a
logical ONE and a more positive level, say,. 0 volts, then represents a logical ZERO.

SET
OUTPUT 20 21 22

Fig. la - Ripple counter, modulo 23
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The design of counters using flip-flops other than those of the type mentioned above
will take a slightly different design approach than is to be undertaken in this report. In
Fig. la, the intrinsic circuit delay of each flip-flop, referred to as propagation delay, is
shown for clarity as being attributable to a separate block marked DE. It is evident that
if the pulse rate is too rapid, some stages may not yet have reacted to a count pulse before
a subsequent pulse has arrived at the first stage. As a result, during part of the pulse
interval of the pulse train shown, the state of the counter will not represent the true count.
In fact, for a given combination of clock period and delay, the counter states may not fol-
low the desired sequence. This is illustrated by Fig. b, which depicts waveforms for a
counter starting from an initial reset condition.

PULSE TRAIN
_ 

TRUE COUNT- 0 I | 2 f 3 | 4 5 | 6 l

k

ADE, ADEI 

C 

I DE, DE, 

BO0

HDE,
A O

INDICATED 0 0 | I 2 3 |2 5 4 6 7
COUNT

Fig. lb - Waveforms describing the counter of Fig. la. For
this combination of clock pe riod and delay, the counte r state s
varyinanundesirable sequence startingfrom an initial reset
c ondition.

Count Rate Versus Counter Size

The foregoing discussion makes it clear that when the state of a counter must be read
between count pulses, the maximum useful count rate must decrease as the number of flip-
flop stages is increased. In selecting a ripple type counter, then, the designer must take
into account circuit delay and count rate.

It will be observed that when an n-stage "ripple" counter is used as a divide-by-2n
counter, the output of each stage triggers the subsequent flip-flop and the pulses to be
counted are applied only to the first stage. For a count-down requirement which is not an
integral power of 2, the next highest power determines the number of flip-flops needed. In
this case, however, some extra gating is required in order to terminate the counter prior
to its normal modulus. One approach is to gate all flip-flops whose outputs are logical
ONEs at the desired last counter state, together with the clock pulse, and apply the output
of this gate to those flip-flops whose outputs are logical ZERO at this last counter state.
This action puts all stages of the counter into the ONE state for a portion of the clock or
pulse period. The next pulse will then change the state of the counter to all ZEROs,
resulting in the desired restart state. Figure 2 illustrates a circuit diagram for a divide-
by-6 counter and the associated voltage waveforms. (For a further discussion on this

2
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L AC A

k ~~~~OUTPUT A

(a) Logic block diagram

TRUE COUNT-FED 1 2 3 4 5 6

K

COUNTER STATE--Ol I 1 2 I 3 1 4 i5 | 7 1

C

B °

0

A

b 1 -E

(b) Voltage waveforms.

Fig. 2 - Divide-by-6 ripple counter in which all O1NEs appear prior
to the all ZERO restart state

approach, see Ref. 1.) If only one output pulse is desired for a certain number of input
pulses, e.g., one pulse each time the counter passes from state 5 to 0, the foregoing cir-
cuit will suffice. However, in the event that all flip-flop output lines are used for parallel
readout, the sequence of all ONEs (equivalent to a binary 7, as shown in Fig. 2b) prior to
all ZEROs could lead to undesirable;results. The designer must determine the effect of
this in his application.

If, in fact, the effect of this is undesirable, alternative approaches can be taken. One
approach would require the sensing of the flip-flop outputs only during intervals which do not
include this invalid count, such as during the negation of the clock or count pulse shown in
the figures. Another approach calls for ,gating appropriate outputs so as to block the trigger-
ing of certain flip-flops and permit the triggering of others out of the normal sequence. This
technique is exemplified by another divide-by-6 circuit showr in Fig. 9. When the count
reaches 5, flip-flops A and C are at the ONE level. The ne2 count pulse complements C,

3
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(a) Logic block diagram

2 3 4 5 6 7 8
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(b) Voltage waveforms. The effect of stage delay is neglected.

Fig. 3 - Divide-by-6 ripple counter in which the all ONE state is avoided
in returning to the all ZERO state

but the resulting transition in C is unable to complement B since A, being at the ZERO
level, is AND gated with C to inhibit complementing of B at this time. The positive
transition obtained at C is then used to reset flip-flop A, thus returning the counter to
the all ZEROs state, ready for the next sequence of pulses.

Other count-down sequences can be obtained through the design of counters using
either of the methods outlined above. A divide-by-9 counter is shown along with associ-
ated waveforms in Figs. 4 and 5 for the two methods discussed.

Setting Counter to Desired State

Since ripple counters depend upon the interaction between flip-flop outputs and inputs,
they generally cannot be arbitrarily set to any value. Suppose it is desired to set one of
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the flip-flops to a ZERO state; this action causes a positive transition at the output which
will then cause the succeeding stage to be complemented, and it in turn may complement
the next stage. Obviously, this "chain reaction" is not desirable. The difficulty is elimi-
nated if all stages are simultaneously reset to ZERO prior to setting. Thus the setting of
certain stages merely brings the SET outputs down to the ONE level, a transition which
will not trigger the subsequent stage. However, in some cases the RESET output of a
certain stage is fed back to other stages and, due to some time difference in the presetting
action, a positive going pulse can be generated to trigger the wrong flip-flop. This diffi-
culty can be eliminated by the use of flip-flops with DC SET and RESET inputs which
respond to pulse levels rather than to a pulse transition.

DESIGN OF A MORE VERSATILE COUNTER

A procedure will now be described which permits the design of counters for any
arbitrary length or any arbitrary sequence, including the ability to count backward. Due
to the inherent "instantaneous carry" type of triggering, circuit delays are not cumulative.
Therefore, the pulse repetition rates are generally limited only by the bandwidth or
transient response capabilities of individual circuit elements and are not a function of the
number of counter stages utilized. The counter to be described can also be set to any
arbitrary value, since the count pulses which are required to trigger each flip-flop are
generally not present during a preset mode or, in fact, can be used to synchronize the
presetting. In order to eliminate the "race" problem,* trailing edge positive going trig-
gering will be used. The previously described convention of negative logic will be
retained.

Preparation of a Truth Table

As a first step, the counting sequences desired are written in tabular form, called a
truth table, as illustrated in Table 1. In this table, it is assumed that two count sequences
are desired, a count down by 6 in both the forward and the backward directions. Thus, a
three-stage counter and one condition bit are required. Corresponding states of stages
A, B, and C are shown in their respective columns for each count value. On a given line,
the binary number ABC representing the counter state is equivalent to the decimal number
shown in the count sequence column. The Trigger Gate columns a, b, and c have binary
ONEs to indicate when these gates are to enable the passing of a count pulse through to
the corresponding flip-flop. These gates are determined as follows: With the counter in
any one particular state, we determine which stages must be changed in order to reach
the next desired state. We then write binary ONEs under the appropriate trigger gate
column. For this example, it is evident from the c column that the C or least significant
counter stage must be complemented (triggered) by each count pulse. In general, where
condition bits are included in the design, the triggering of a given stage of any counter is
a function of the state of each condition bit as well as the state of all significant counter
bits.

Once the trigger gate functions have been found using the truth table, two approaches
can be taken. One approach is a straightforward Boolean algebra manipulation in order
to simplify the expressions prior to final circuit design. The other approach is the use of
the Veitch diagrams. This latter approach is generally more desirable when the expres-
sions are so long as to make the Boolean algebra manipulation too unwieldy.

*When leading edge triggering is utilized, a flip-flop or other storage device can change
state during the trigger pulse. For example, if the change of state is such that an associ-
ated AND gate is enabled during the pulse, it will be possible to pass the later part of the
pulse through the gate and perhaps complement a flip-flop out of sequence. This action
constitutes the "race" problem.

7
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Table 
Truth Table for a Count-Down-By-6 Backward-Forward Counter

Variables
P ~~~~~~~Trigger Gate Con

Terms Counter State Condition* CountTerms , D Sequence

A | B |C D a b|c

P1 0 0 0 1 0 0 1 0 1

P 3 0 0 1 1 0 1 1 1 2

P 5 0 1 0 1 0 0 1 2 3

P 7 0 1 1 1 1 1 1 3 4

P 1 0 0 1 0 0 1 4 5

P 1 1 1 0 1 1 1 0 1 5 6

P1 0 0 0 1 0 7

PO 0 0 0 0 1 0 1 0 n + 1

P 1 0 1 0 1 0 0 0 1 5 n + 2

P 8 1 0 0 0 1 1 1 4 n + 3

P 6 0 1 1 0 0 0 1 3 n + 4

P 4 0 1 0 0 0 1 1 2 n + 5

P2 0 0 1 0 0 0 1 1 n + 6

PO 0 0 0 0 0 n + 7

*D = 1, forward; D = 0, backward.

P Terms

In order to better utilize these approaches, a clear understanding of P terms and
Veitch diagrams is required. While P terms have broad application for simplifying
involved Boolean expressions, they are here discussed only with reference to digital
counter design. (P terms are called min-terms in some sources.) Each P term cor-
responds to a definite binary state, and since it must include all the variables involved,
it is considered a canonical term. In the example of Table 1, the variables are A, B, C,
and D. Once the order of listing these variables is arbitrarily chosen, the subscript n
of the symbol Pn is written as a decimal representation of the binary number represented
by a given state of these variables, including any condition bit such as D of Table 1.

In writing the Boolean algebra representations of P terms, a ONE is represented by
an uncomplemented variable, and a ZERO by a complemented variable. For example,
P5 with three variables would simply be f (AB C) = A b C; P5 with four variables would
be f(A B C D) = A B C D, etc. Furthermore, a situation in which P 5 is f (AB C) = AB C
can correspond to a count of 5 for a three-stage counter, or it can correspond to a count
of 2 for a two-stage counter with variable C representing a condition bit. Similarly, for
a three-stage counter at a count of 5 with a fourth variable D being a condition bit, the P
term could be written as P1 = AB CD. It is therefore to be noted that the subscript for

8
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a P term does not always correspond to the value of the counter state. This is evident
from Table 1, where the P term symbols in the first column are seen to have subscripts
differing from the corresponding count value found in the count sequence column.

We can now form the expression for each trigger gate by writing those P terms which
correspond to binary ONEs under the trigger gate columns. Thus, the Boolean expression
for the trigger gate of the B stage is

b(t) = P3 + P + P8 + P4

= ABCD + ABCD + ABCD + ABCD.

This is rearranged as

b(t) = (B + B)ACD + ABCD + ABCD

and further simplified to become

b(t) = ACD+ ABCD + ABCD.

This equivalent expression for b(t) is seen to be somewhat more simple to implement
than the initial expression. As will be shown later, far more extensive simplifications
are possible in some instances.

Use of Veitch Diagram

Use of the Veitch diagram will now be described. The reader is assumed to have
some prior knowledge of this useful technique (see Refs. 2-4). (In this report Veitch
diagrams are used, rather than more improved mapping diagrams, since they are basic
to any other modifications. In practice, whichever map seems preferable may be used.)
In Fig. 6 is shown possible Veitch diagrams for several sets of variables. It will be
noted that for m variables involved, the Veitch diagram consists of 2m squares, so that
each square can be used to represent a P term. Each variable which brackets a number
of squares represents half the diagram and is lettered as shown; the other half is normally
not marked and represents the complement of the variable. Thus in the three-variable
diagram, PO, pl, P3, and P2 correspond to the complement of A or A.

Any Boolean function which consists of several P terms can be plotted on the appro-
priate Veitch diagram by marking a ONE in the square assigned to each P term in the
function. To minimize circuitry which implements P terms, we begin by observing the
Veitch diagram for ONEs in groups of two, four, eight, etc., in a row or line or forming
a block. The maximum number of ONEs in a group provides the greatest amount of
minimization. In encircling these groups, it is important to note that the rectangular
Veitch diagram may first be rolled until opposite boundaries are joined to form either a
vertical or a horizontal cylinder. Familiarization with the possible groupings for each
diagram can usually be obtained only through practice and use.

A method which helps systemize the approach and also eliminate some redundancy is
to first encircle all ONEs which cannot be grouped in sets of two. Then encircle all sets
of two ONEs which cannot be grouped in sets of four, etc. This assures that no group will
be completely covered by another group.

Upon encircling a maximum number of ONEs in a group, we determine what minimum
number of variables uniquely define that group. For example, a group consisting of ONEs
in squares P.2, P 3, P, and P in the four-variable Veitch diagram is uniquely defined by
the simple noncanonical expression A C. It is seen by inspection that these four squares

9
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m = THREE VARIABLES B

PO P 3 P2

_4 pa 7 p6

C

m FIVE

B

}B

A

Fig. 6 - Veitch diagrams

are common to both the two A rows and the two C columns. It is true that two of the
squares are also common to one B row and two squares are found in one D column, but
these facts are superfluous since the intersection of A and C completely cover the block
of ONEs.

By the Boolean algebra manipulation approach, one can write

f(AB CD) = P12 + P13 + P8 + 9

= ABOD + ABCD + ABCD + ABCD.

10
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This can be successively rearranged and simplified using the theorems of Boolean algebra
to secure the following:

f(ABCD) = ABC(1D + D) + ABC(D + D)

= (ABC + ABC) (D + D)

= A C (B + b) (D + D)

= AC.

Thus, the two approaches are seen to lead to the same result, a dramatic simplification
of the original Boolean expression.

It should be noted that groups can also be formed by ONEs which do not at first appear
to be in a group, such as ONEs falling in the outer squares of the diagram. For example,
a ONE in PO, P2 , PB, and P10 in the four-variable diagram actually forms one group of four.
This can easily be shown to be true for this example. By inspection of the diagram, one
can immediately write,

PO + P2 + P8 + P1 0 =BD.

By a more circuitous route, we begin with the Boolean expressions for each P term:

P0 + P2 + P8 + Pt0 = ABD + ABCD + ABCD + ABCD

and proceed to simplify this as follows:

P0 + P2 + P8 + P10 = (AC + AC + AC + AC)BD

= [A (C + C) + A (C + C)] BD

= (A + A) 3 i5

= B.

It is clear that the Veitch diagram has provided a quick simplification of the functions.
The straightforward Boolean reduction techniques lead to the same results but with quite a
bit more work, including some trial and error attempts. Since each variable represents an
input to a logic element and each four-variable term is a logic block, the minimization of
logic elements is obvious. There is a one-to-one correspondence between the number of
distinct groups and the number of separate terms (and therefore circuit or logic blocks)
in the minimized function.

EXAMPLE: UP-DOWN COUNTER DESIGN

Several examples will be given to illustrate the aforementioned approaches. Assume
that a modulo-10 counter is desired; that is, the counter repeats its sequence every ten
count pulses. Gating functions will be derived separately for the up and down sequences,
and these will then be suitably combined to be implemented as one composite counter.

Gate Functions for Up Counter

A truth table for the forward sequence is prepared as in Table 1 and appears as in
Table 2.

1l
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Table 2
Truth Table for the Forward Sequence

Variables TigrGt
P Terms (Counter State) Trigger Ga Count Pulses

Zii~[i D ] 7~]I.Seuence
A B C D a b c d

PO 0 0 0 0 0 0 0 1 0 1
P1 0 0 0 1 001 1 1 2

P 2 0 0 1 0 0 0 0 1 2 3

P 3 O 0 1 1 0 1 1 1 3 4

P 4 0 1 0 0 0 0 0 1 4 5

P 5 0 1 0 1 0 0 1 1 5 6

P 6 0 1 1 0 0 0 0 1 6 7

P 7 0 1 1 1 1 1 1 1 7 8

P 8 1 0 0 0 0 0 0 1 8 9

P 9 1 0 0 1 1 0 0 1 9 10

P0 O 0 0 0 0 - --- 0 -

From the Trigger

d(t) = 1

c(t) = Pi

b(t) = P 3

a(t) = P7

Gate columns we can write the trigger equations:

+ P3

+ P7

+ P9

+ P5 + P7 = ABCD + ABCD+ ABCD+ ABCD

=ABCD + ABCD

ABCD + ABCD.

Now insert ONEs in appropriate squares on the four-variable Veitch diagram and
obtain groups where possible as shown below:

ACD ' 

-k N

II I LJ
.I I-
I I I

I I~~I11111 11

D

b M ACD

c

A BC D \/

B

A

a ( ) ABCD + ABCO

A

c

AD

I, 111

I-

'I I
1 II

D

c (t) AD

B

A

a
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Use Don't Care" Terms to Simplify

A further simplification can usually be accomplished through the use of the so-called
"don't care" terms. These terms correspond to those states of the counter which do not
occur in the desired sequence and hence do not affect the trigger gate logic. In the present
example, the "don't care" terms are P,,, P,,, P12, P13 , P14, and P15. These are the P
terms which do not appear in any of the trigger gate expressions. Now, by inserting an
X in those squares which correspond to the "dofl't care" terms and treating them as if
they were ONEs in our search for large groups, simplification is obtained as follows:

C

AD_

B

A

D
C (t ) AD

NO SIMPLIFICATION HERE

C

CD

I rlII
I II ¢11

I X

X DX 

D
b (t) CD

DON'T CARE TERMS P AND P15

PERMIT OMISSION OF VARIABLE A

B

A

C

BCD

I -i-I

I I
, I-- -6I

X I X I XII X

I I -

',I X X
I

AD

D
a (t) AD + BCD

NOTE THAT HERE ONE P TERM
IS COMMON TO TWO GROUPS

For clarification,
below:

the preceding steps leading to the final simplification are listed

d(t) = 1

c(t) = AB-CD +ABCD+ ABCD +ABCD

b(t) = ABCD + ABCD

a(t) = ABCD + ABCD

d(t) = 1

c(t) = AD

b(t) = ACD

a(t) = ABCD + ABCD

d(t) = 1

c(t) = AD

b(t) = CD

Reduced gate functions.

Functions reduced using
"don't care" terms.

a(t) = AD + BCD

A

Unreduced
P terms.

13
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The reader is cautioned that in using don't care" terms, certain problems do exist.
During turn-on it may be possible for the counter to fall into one of the "don't care"
states, leading to the possibility of "hanging up" the counter. Therefore, if the counter
cannot correct itself by going into its normal sequence after a few count pulses, a pre-
setting to any normal sequence state must be provided.

Gate Functions for own Counter

Let us suppose further that we desire our counter to be able to count backward. It is
mentioned again that any arbitrary sequence can just as readily be handled. The truth
table for the backward count (Table 3) is prepared as before.

Table 3
Truth Table for the Backward Count

Variables TigrGt
P Terms (Counter State) Trigger Gate Count Pulses

I I D 1 11 1 Sequence

P9 1001 0 0 01 9 1
P8 1 0 0 0 1 1 1 1 8 2

P7 0 11 1 00 0 1 7 3

P11 0110 0 0 1 1 6 4
Ps 010 1 0 0 0 1 5 5
P4 0 1 0 0 0 1 1 1 4 6

P3 00 1 1 0 0 0 1 3 7
P2 0 0 1 0 0 0 1 1 2 8

PI 00 1 0 0 0 1 1 9
PI 0 0 0 0 1 0 0 1 0 10

P9 1 0 0 1 - - - - 9 -

From the Trigger Gate columns we can write the trigger gate equations:

d(t) = 1

c(t) = P + P6 + P4 + P2 = ABCD ABCD+ ABCD+ ABCD

b(t) = P8 + P4 = ABOCD + ABC D

a(t) = P + PO = ABCD + AB C D.

14
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the appropriate squares of the Veitch diagram as before and obtain
The "don't care" terms are marked by an X in appropriate squares

C

A

B

A

AD

b (t) AD + BCD
D

a0(t) 600

Composite Counter Formed with U Gate

We must naturally distinguish between the two modes of counter operation through an
additional gate, since we elected to treat the design as two separate problems. A simple
push-pull gate will be applied to each equation as appropriate for the forward-backward
modes. We will call this gate U for "up" or forward; hence U will be for backward. The
count pulse k is needed to provide the proper operation of the counter and also to provide
instantaneous carry type of triggering, thus assuring that all stages change state at the
same time. Combining the equations shown above with those from page 13, we have the
following for a composite up-down counter:

d(t) = k

c(t) = kAD U + kBD U + kAD U + kCDU

b(t) =kCDU+kBCD U+kADU

a(t) =kADU+kBCDU+kBCDU.

These equations can now be implemented directly using AND-OR logic. However, if
NAND logic is being used, it is necessary to apply a fundamental principle of Boolean
algebra called De Morgan's theorem. This theorem is generally all that is required for
this operation. De Morgan's theorem and several variations are given below:

A + B = AB

A = AB

A+O =A.

The final equation is applicable when a signal must be inverted to provide the needed
polarity. Applying De Morgan's theorem to our equations, we arrive at the following
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set of equations which are now in NAND logic form and ready to be wired:

d(t) = k

c(t) = (kADU) (kBD U) (kCDU) (kADU)

b(t) = (kCDU) (kBD CU) (kADU)

a(t) = (kADU) (kBCDU) (kBCD U).

Our circuit configuration can now be drawn in logic block diagram form as shown in
Fig. 7. Complementing of stages A, B, and C is seen to be delayed by passage of the
count pulse through two levels of logic. Thus, for true instantaneous carry operation,
two inverters having like delay are inserted at the D stage input.

Further simplification may be possible at this point through manipulation of the
equations using the Boolean algebra techniques. When the Boolean expressions are reduced
by straightforward methods using the Veitch diagram, a configuration is obtained which has
two levels of logic (assuming of course, that the complements of the input variables are
available). Factoring can be used in order to reduce the equations and also the hardware
requirements, although some of the speed of the circuit is sacrificed. That is, when a
Boolean expression has been factored and is implemented, some signals may have to pass
through many levels of logic before appearing at the output. The designer must determine
if the alteration, though affording him a savings in circuit elements, will adversely effect
the overall circuit operation.

In our present example, the equation for the c(t) trigger can be further simplified
as shown in the following:

c(t) = kADU + kBDU + kCDU + kADU.

Factoring this equation, we readily obtain

c(t) = kAD U + kDU(B + C + A)

and finally

c(t) = kAD U + kDU (B C A)

since by De Morgan's theorem,

B + C + A = B C A.

Using De Morgan's theorem again, we can put the final equation in NAND logic form
as

c(t) = (kAD U) (kD U) (B C A).

This equation can be implemented using four NAND gates with a total of 13 input diodes
whereas prior to simplification, five NAND gates and 20 input diodes were required.
However, an extra circuit delay is imposed in the second term because of the B CA
logical operation.

To illustrate how this circuit delay may have an adverse effect, consider the sets
of hypothetical waveforms and the associated circuitry shown in Fig. 8. In case II since
Y does not go to ONE level prior to the count pulse due to added NAND gate delay, flip-
flop Z does not get triggered as desired.
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NAND-| *- DELAY

XI

Y NAND

7 -.. fI 1- DELAY

z

Fig. 8 - Adverse effect of an extra circuit delay

Unless the designer can be absolutely certain that he will not run into the type of
problem just illustrated, it would be advisable to maintain only two logic levels through-
out the circuit and forego the decrease in components.

CIRCUIT ANALYSIS

As a final treatment, it might be well to consider how the foregoing method for syn-
thesizing a circuit can readily be applied for analysis. The sequence of any complex
counter can be ascertained from the logic diagram of the counter by the following
procedure.

Write Trigger Functions

Let us analyze a counter (Fig. 9) whose sequence is purely hypothetical and not in the
least bit obvious. We first write the Boolean expression for each trigger input:

c(t) = (k ) (k B) (k A C)

b(t) = (k B) (k C)

a(t) = (k B C) (k A) (k B C).

x
Y

7

CASE I
a

z

k
14

CASE I
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B
C
k

k 
B-

C

k

BCK

-A

B

k

Fig. 9 - A complex counter assumed for analysis

Using De Morgan's theorem we write the equations in AND-OR form.

c(t) = kAC + kB + kAC

b(t) =kB +kC

a(t) = kB C + kA + kB C.

Since the k term is simply the count pulse, it is not required in the analysis of the trigger
gates.

Veitch Diagrams Used to Rewrite Functions as P Terms

Now we place ONEs in the Veitch diagram squares which correspond to each term of
the trigger equation:

B

A C B
AC I )- B

C

c (t ) = AC + B + AC

c A BB

I~

C
b (t) = B + C

BC BCN 

A

C
a (t ) A + BC + 

Referring to the Veitch diagram for three variables (Fig. 6), we can write the P terms
for those squares having ONEs in expression form. Thus,

c(t) = PO + P2 + P 3 + P 5 + P6 + P7

b(t) = P1 + P2 + P3 + P5 + P6 + P7

a(t) = PO + P 3 + P4 + P5 + P6 + P7

k

k

A
C
K
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which are the final trigger gate expressions in canonic form. It remains now for us to
utilize these functions to determine what sequence they cause the counter to count through.

Truth Table Leads to Count Sequence and Don't Care" Terms

A truth table is set up as was done for synthesis, but with the Counter State (Variables)
columns filled in only with the state corresponding to the lowest P term found in the trigger
gate expressions. In our example, since P0 is the lowest term in the final trigger gate
expressions in canonic form above, our initial entry in the Variables columns are 0 0 0.
As the next step, we place a ONE under each Trigger Gate column which contains PO as a
term of its expression. In our example, a ONE would be placed under the Trigger Gate
columns a and c. This, then, indicates which flip-flops are to be complemented when the
counter is in the 0 0 0 state. On the next line of the Variables columns, we place that
state of the counter which will occur after we perform the above noted complementing.
In our example, since a and c have ONEs, A changes from 0 to 1 and C changes from 0
to 1. These few preceding steps are shown tabulated below:

Variables Trigger Gate Count

P Terms A I B I C a b I clSequence

___~ ~ a b C

P.

P5

0

1

0

0

0

1

I 0 1 0

Since we now know the next state of the counter, we can write the appropriate P term and
once again place ONEs under each Trigger Gate column which has that P term in its
expression. In our case, we have P5 ; hence we place a ONE under a, b, and c, since all
the gate expressions contain a P5 term. The appropriate variables are thus complemented,
a new P term found, and trigger gates again determined. This procedure is continued until
the sequence repeats itself. We then have arrived at the counter sequence, which is what
we set out to find.

The completed solution is shown in Table 4, with the sequence shown in the right-
hand column.

Table 4
Truth Table for the

0

1

0

0

0

1

0

0

1

1

Counter in Fig. 9

Variables Trigger Gate Count

A B C a b Sequence
I I .I,

1

1

0

0

1

,1 
1

0

0

1

0

1

0

0

0

I

0

1

1

0

0

1

1

0

0

1

1

1

0

1

0

1

0

5

2

1

3

4

0

Completed

. . . . . .
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(Page 22 blank)

It will be noted that P terms P6 and P7, although appearing in the expressions for
the trigger gates, do not appear in our reconstructed truth table. This is a consequence
of the use of "don't care" terms in the original design of the counter in order to minimize
circuit elements. In the analysis, the "don't care" terms are not at first apparent, but
they show up by their absence in the final reconstruction. In troubleshooting a counter
circuit, it may be necessary that we know if don't care" terms were used in the design
so that we may make an intelligent attempt at correcting any malfunctions.

CONCLUSIONS

It should be quite evident that although steps have been outlined for the design of
counters and detailed examples have been given, it still remains for the designer to
exercise judgment in determining the approaches to take for each situation. This report
has discussed some areas where the designer is faced with a choice of approaches; some
choices are clearly defined, while others depend largely upon intuition and experience.

In general, P terms and Veitch diagrams offer a convenient approach to finding a
simplified circuit configuration for gating clock pulses to complement each counter stage
so as to provide the desired arbitrary sequence. Conversely, the same technique provides
a straightforward approach to the far more complex task of analyzing the unknown count
sequence of a given counter design.
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